Banner

3D PAPER MODELING! ____________ Creating awesome 3D models from flat sheets of paper and a printer. ____________ Enjoy the ride!
Need to chat live with me for tips and tricks with your computer or crafts? Click the LIVE CHAT menu link above. Check out the all new accessibility feature. Look for this icon in the bottom left corner
Please be patient. Hundreds of model templates and instructions are on the way.

Space Craft



Apollo Command Module
The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere. Wikipedia

Parts / Instructions



Apollo Lunar Module
The Apollo 11 Lunar Module (LM) "Eagle" was the first crewed vehicle to land on the Moon. It carried two astronauts, Commander Neil A. Armstrong and LM pilot Edwin E. "Buzz" Aldrin, Jr., the first men to walk on the Moon. Also included on the LM was the Early Apollo Scientific Experiment Package (EASEP), which consisted of several self-contained experiments to be deployed and left on the lunar surface, and other scientific and sample collection apparatus. NASA

Parts / Instructions



Apollo Lunar Rover
The Lunar Roving Vehicle (LRV) is a battery-powered four-wheeled rover used on the Moon in the last three missions of the American Apollo program (15, 16, and 17) during 1971 and 1972. It is popularly called the Moon buggy, a play on the term "dune buggy".

Built by Boeing, each LRV has a mass of 462 pounds (210 kg) without payload. It could carry a maximum payload of 970 pounds (440 kg), including two astronauts, equipment, and cargo such as lunar samples, and was designed for a top speed of 6 miles per hour (9.7 km/h), although it achieved a top speed of 11.2 miles per hour (18.0 km/h) on its last mission, Apollo 17. Wikipedia

Parts / Instructions



Mercury
Project Mercury was the first human spaceflight program of the United States, running from 1958 through 1963. An early highlight of the Space Race, its goal was to put a man into Earth orbit and return him safely, ideally before the Soviet Union. Taken over from the US Air Force by the newly created civilian space agency NASA, it conducted 20 uncrewed developmental flights (some using animals), and six successful flights by astronauts. The program, which took its name from Roman mythology, cost $2.68 billion (adjusted for inflation). The astronauts were collectively known as the "Mercury Seven", and each spacecraft was given a name ending with a "7" by its pilot.

The Space Race began with the 1957 launch of the Soviet satellite Sputnik 1. This came as a shock to the American public, and led to the creation of NASA to expedite existing US space exploration efforts, and place most of them under civilian control. After the successful launch of the Explorer 1 satellite in 1958, crewed spaceflight became the next goal. The Soviet Union put the first human, cosmonaut Yuri Gagarin, into a single orbit aboard Vostok 1 on April 12, 1961. Shortly after this, on May 5, the US launched its first astronaut, Alan Shepard, on a suborbital flight. Soviet Gherman Titov followed with a day-long orbital flight in August 1961. The US reached its orbital goal on February 20, 1962, when John Glenn made three orbits around the Earth. When Mercury ended in May 1963, both nations had sent six people into space, but the Soviets led the US in total time spent in space. Wikipedia

Parts
Instructions included in file



Gemini
Project Gemini (IPA: /ˈdʒɛmɪni/) was the second United States human spaceflight program to fly. Conducted after the first American manned space program, Project Mercury, while the Apollo program was still in early development, Gemini was conceived in 1961 and concluded in 1966. The Gemini spacecraft carried a two-astronaut crew. Ten Gemini crews and 16 individual astronauts flew low Earth orbit (LEO) missions during 1965 and 1966. Wikipedia

Small Model Parts / Large Model Parts
Instructions included in files



International Space Station
The International Space Station (ISS) is a large space station assembled and maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA (United States), Roscosmos (Russia), JAXA (Japan), ESA (Europe), and CSA (Canada). The ISS is the largest space station ever built. Its primary purpose is to perform microgravity and space environment experiments.

Operationally, the station is divided into two sections: the Russian Orbital Segment (ROS) assembled by Roscosmos, and the US Orbital Segment, assembled by NASA, JAXA, ESA and CSA. A striking feature of the ISS is the Integrated Truss Structure, which connects the large solar panels and radiators to the pressurized modules. The pressurized modules are specialized for research, habitation, storage, spacecraft control, and airlock functions. Visiting spacecraft dock at the station via its eight docking and berthing ports. The ISS maintains an orbit with an average altitude of 400 kilometres (250 mi) and circles the Earth in roughly 93 minutes, completing 15.5 orbits per day. Wikipedia

Parts / Instructions



Mobile launcher platform
A mobile launcher platform (MLP), also known as mobile launch platform, is a structure used to support a large multistage space vehicle which is assembled (stacked) vertically in an integration facility (e.g. the Vehicle Assembly Building) and then transported by a crawler-transporter (CT) to a launch pad. This becomes the support structure for launch.

The use of mobile launcher platform is a part of the Integrate-Transfer-Launch (ITL) system, which involves vertical assembly, transport, and launch of rockets. The concept was first implemented in the 1960s for the United States Air Force's Titan III rocket, and it was later used by NASA for Saturn V, Space shuttle, and Space Launch System.[1]

There are alternatives to ITL. Horizontal assembly and transport to the pad is used by Russia, by ULA for the Delta IV family, and by SpaceX for the Falcon 9 family. Vertical assembly on the launch pad is used for smaller launch vehicles and for the SpaceX Starship. Wikipedia

Parts / Instructions



Saturn V Launch Vehicle
The Saturn V[a] is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered by liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

As of 2024, the Saturn V remains the only launch vehicle to have carried humans beyond low Earth orbit (LEO). The Saturn V holds the record for the largest payload capacity to low Earth orbit, 311,152 lb (141,136 kg), which included unburned propellant needed to send the Apollo command and service module and Lunar Module to the Moon. Wikipedia

Parts / Instructions



Orbital Space Shuttle
The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development.[7]

The first (STS-1) of four orbital test flights occurred in 1981, leading to operational flights (STS-5) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on a total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle-Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time was 1,323 days. Wikipedia

Space Shuttle Columbia
Parts & Instructions

Space Shuttle Endeavour
Parts - Instructions



SpaceShipTwo & White Knight II
The Scaled Composites Model 339 SpaceShipTwo (SS2) is an air-launched suborbital spaceplane type designed for space tourism. It is manufactured by The Spaceship Company, a California-based company owned by Virgin Galactic.

SpaceShipTwo is carried to its launch altitude by a Scaled Composites White Knight Two, before being released to fly on into the upper atmosphere powered by its rocket engine. It then glides back to Earth and performs a conventional runway landing.[1] The spaceship was officially unveiled to the public on 7 December 2009 at the Mojave Air and Space Port in California.[2] On 29 April 2013, after nearly three years of unpowered testing, the first one constructed successfully performed its first powered test flight.[3]

Virgin Galactic plans to operate a fleet of five SpaceShipTwo spaceplanes in a private passenger-carrying service[4][5][6][7] and has been taking bookings for some time, with a suborbital flight carrying an updated ticket price of US$250,000.[8] The spaceplane could also be used to carry scientific payloads for NASA and other organizations. Wikipedia

Parts / Instructions



SpaceX Falcon Heavy
Falcon Heavy is composed of three reusable Falcon 9 nine-engine cores whose 27 Merlin engines together generate more than 5 million pounds of thrust at liftoff, equal to approximately eighteen 747 aircraft. As one of the world’s most powerful operational rockets, Falcon Heavy can lift nearly 64 metric tons (141,000 lbs) to orbit.

With more than 5 million pounds of thrust at liftoff, Falcon Heavy is one of the most capable rockets flying. By comparison, the liftoff thrust of the Falcon Heavy equals approximately eighteen 747 aircraft at full power. Falcon Heavy can lift the equivalent of a fully loaded 737 jetliner—complete with passengers, luggage and fuel—to orbit. SpaceX

Parts / Instructions



SpaceX Starship
SpaceX’s Starship spacecraft and Super Heavy rocket – collectively referred to as Starship – represent a fully reusable transportation system designed to carry both crew and cargo to Earth orbit, the Moon, Mars and beyond. Starship is the world’s most powerful launch vehicle ever developed, capable of carrying up to 150 metric tonnes fully reusable and 250 metric tonnes expendable.

As the most powerful launch system ever developed, Starship will be able to carry up to 100 people on long-duration, interplanetary flights. Starship will also help enable satellite delivery, the development of a Moon base, and point-to-point transport here on Earth.

Starship leverages tanker vehicles (essentially the Starship spacecraft minus the windows) to refill the Starship spacecraft in low-Earth orbit prior to departing for Mars. Refilling on-orbit enables the transport of up to 100 tons all the way to Mars. And if the tanker ship has high reuse capability, the primary cost is just that of the oxygen and methane, which is extremely low. SpaceX

Parts
Instructions not included



Lockheed Martin X-33 VentureStar Spaceplane
The Lockheed Martin X-33 was a proposed uncrewed, sub-scale technology demonstrator suborbital spaceplane that was developed for a period in the 1990s. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was planned to be a next-generation, commercially operated reusable launch vehicle. The X-33 would flight-test a range of technologies that NASA believed it needed for single-stage-to-orbit reusable launch vehicles (SSTO RLVs), such as metallic thermal protection systems, composite cryogenic fuel tanks for liquid hydrogen, the aerospike engine, autonomous (uncrewed) flight control, rapid flight turn-around times through streamlined operations, and its lifting body aerodynamics. Wikipedia

Parts / Instructions



Apollo 11 Space Suit
The Apollo/Skylab space suit (sometimes called the Apollo 11 Spacesuit due to the fact that it was most known for being used in the Apollo 11 Mission) is a class of space suits used in Apollo and Skylab missions. The names for both the Apollo and Skylab space suits were Extravehicular Mobility Unit (EMU).[2] The Apollo EMUs consisted of a Pressure Suit Assembly (PSA) aka "suit" and a Portable Life Support System (PLSS) that was more commonly called the "backpack".[3] The A7L was the PSA model used on the Apollo 7 through 14 missions.[4]

The subsequent Apollo 15-17 lunar missions,[5] Skylab,[6] and Apollo–Soyuz used A7LB pressure suits.[7] Additionally, these pressure suits varied by program usage. For the Skylab EMU, NASA elected to use an umbilical life support system named the Astronaut Life Support Assembly. Wikipedia


Simple Model
Parts / Instructions

Advanced model
Parts / Instructions



Mars Pathfinder
Mars Pathfinder[1] is an American robotic spacecraft that landed a base station with a roving probe on Mars in 1997. It consisted of a lander, renamed the Carl Sagan Memorial Station, and a lightweight, 10.6 kg (23 lb) wheeled robotic Mars rover named Sojourner,[4] the first rover to operate outside the Earth–Moon system.

Launched on December 4, 1996, by NASA aboard a Delta II booster a month after the Mars Global Surveyor, it landed on July 4, 1997, on Mars's Ares Vallis, in a region called Chryse Planitia in the Oxia Palus quadrangle. The lander then opened, exposing the rover which conducted many experiments on the Martian surface. The mission carried a series of scientific instruments to analyze the Martian atmosphere, climate, and geology and the composition of its rocks and soil. It was the second project from NASA's Discovery Program, which promotes the use of low-cost spacecraft and frequent launches under the motto "cheaper, faster and better" promoted by then-administrator Daniel Goldin. Wikipedia

Parts
File contains both the Carl Sagan Memorial Station
and Mars rover Sojourner,



Mars Exploration Rover
NASA's Mars Exploration Rover (MER) mission was a robotic space mission involving two Mars rovers, Spirit and Opportunity, exploring the planet Mars. It began in 2003 with the launch of the two rovers to explore the Martian surface and geology; both landed on Mars at separate locations in January 2004. Both rovers far outlived their planned missions of 90 Martian solar days: MER-A Spirit was active until March 22, 2010,[1] while MER-B Opportunity was active until June 10, 2018.

The mission's scientific objective was to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars. The mission is part of NASA's Mars Exploration Program, which includes three previous successful landers: the two Viking program landers in 1976 and Mars Pathfinder probe in 1997. Wikipedia

Parts / Instructions



Mars Rover Curiosity
Curiosity is a car-sized Mars rover exploring Gale crater and Mount Sharp on Mars as part of NASA's Mars Science Laboratory (MSL) mission. Curiosity was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and landed on Aeolis Palus inside Gale crater on Mars on August 6, 2012, 05:17:57 UTC. The Bradbury Landing site was less than 2.4 km (1.5 mi) from the center of the rover's touchdown target after a 560 million km (350 million mi) journey.

Mission goals include an investigation of the Martian climate and geology, assessment of whether the selected field site inside Gale has ever offered environmental conditions favorable for microbial life (including investigation of the role of water), and planetary habitability studies in preparation for human exploration. Wikipedia

Parts / Instructions



Hubble Space Telescope
The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA's Great Observatories. The Space Telescope Science Institute (STScI) selects Hubble's targets and processes the resulting data, while the Goddard Space Flight Center (GSFC) controls the spacecraft.

Hubble features a 2.4 m (7 ft 10 in) mirror, and its five main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble's orbit outside the distortion of Earth's atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe. Wikipedia

Intermediate Builders
Parts / Instructions

Advanced Builders
Parts / Instructions



Kepler space telescope
The Kepler space telescope is a defunct space telescope launched by NASA in 2009[5] to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler,[8] the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018. Wikipedia

Parts / Instructions



Voyager 1 Space Probe
The Voyager program is an American scientific program that employs two interstellar probes, Voyager 1 and Voyager 2. They were launched in 1977 to take advantage of a favorable alignment of the two gas giants Jupiter and Saturn and the ice giants, Uranus and Neptune, to fly near them while collecting data for transmission back to Earth. After launch, the decision was made to send Voyager 2 near Uranus and Neptune to collect data for transmission back to Earth.[1]

As of 2024, the Voyagers are still in operation beyond the outer boundary of the heliosphere in interstellar space. They collect and transmit useful data to Earth. Wikipedia

Parts / Instructions



New Horizons Space Probe
New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program.[5] Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern,[6] the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System. Wikipedia

Parts / Instructions



Rosetta Philae Comet Lander
Philae (/ˈfaɪliː/ or /ˈfiːleɪ/) was a robotic European Space Agency lander that accompanied the Rosetta spacecraft[8][9] until it separated to land on comet 67P/Churyumov–Gerasimenko, ten years and eight months after departing Earth. On 12 November 2014, Philae touched down on the comet, but it bounced when its anchoring harpoons failed to deploy and a thruster designed to hold the probe to the surface did not fire. After bouncing off the surface twice, Philae achieved the first-ever "soft" (nondestructive) landing on a comet nucleus, although the lander's final, uncontrolled touchdown left it in a non-optimal location and orientation.

Despite the landing problems, the probe's instruments obtained the first images from a comet's surface. Several of the instruments on Philae made the first direct analysis of a comet, sending back data that would be analysed to determine the composition of the surface. In October 2020, scientific journal Nature published an article revealing what Philae had discovered while it was operational on the surface of 67P/Churyumov–Gerasimenko. Wikipedia

Parts / Instructions

No comments:

Post a Comment